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Learning rates oflq coefficient regularization

learning with Gaussian kernel

Shaobo Lin, Jingshan Zeng, Jian Fang and Zongben Xu

Abstract

Regularization is a well recognized powerful strategy to improve the performance of a learning

machine andlq regularization schemes with0 < q < ∞ are central in use. It is known that differentq

leads to different properties of the deduced estimators, say, l2 regularization leads to smooth estimators

while l1 regularization leads to sparse estimators. Then, how does the generalization capabilities of

lq regularization learning vary withq? In this paper, we study this problem in the framework of

statistical learning theory and show that implementinglq coefficient regularization schemes in the

sample dependent hypothesis space associated with Gaussian kernel can attain the same almost optimal

learning rates for all0 < q < ∞. That is, the upper and lower bounds of learning rates forlq

regularization learning are asymptotically identical forall 0 < q < ∞. Our finding tentatively reveals

that, in some modeling contexts, the choice ofq might not have a strong impact with respect to the

generalization capability. From this perspective,q can be arbitrarily specified, or specified merely by

other no generalization criteria like smoothness, computational complexity, sparsity, etc..

Index Terms

Learning theory, Sample dependent hypothesis space,lq regularization learning, Gaussian kernel.

I. INTRODUCTION

Many scientific questions boil down to learning an underlying rule from finitely many input-

output samples. Learning means synthesizing a function that can represent or approximate the

underlying rule based on the samples. A learning system is normally developed for tackling

such a supervised learning problem. Generally speaking, a learning system should comprise a
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hypothesis space, an optimization strategy and a learning algorithm. The hypothesis space is a

family of parameterized functions that regulate the forms and properties of the estimator to be

found. The optimization strategy depicts the sense in whichthe estimator is defined, and the

learning algorithm is an inference process to yield the objective estimator. A central question of

learning is and will always be: how well does the synthesizedfunction generalize to reflect the

reality that the given “examples” purport to show us.

A recent trend in supervised learning is to utilize the kernel approach, which takes a reproduc-

ing kernel Hilbert space (RKHS) [Cucker and Smale,2001] associated with a positive definite

kernel as the hypothesis space. RKHS is a Hilbert space of functions in which the pointwise

evaluation is a continuous linear functional. This property makes the sampling stable and effec-

tive, since the samples available for learning are commonlymodeled by point evaluations of the

unknown target function. Consequently, various learning schemes based on RKHS such as the

regularized least squares (RLS) [Cucker and Smale,2001], [22], [27] and support vector machine

(SVM) [15], [20] have triggered enormous research activities in the last decade. From the point

of view of statistics, the kernel approach is proved to possess perfect learning capabilities [22],

[27]. From the perspective of implementation, however, kernel methods can be attributed to such

a procedure: to deduce an estimator by using the linear combination of finitely many functions,

one firstly tackles the problem in an infinitely dimensional space and then reduces the dimension

by utilizing a certain optimization technique. Obviously,the infinite dimensional assumption of

the hypothesis space brings many difficulties to the implementation and computation in practice.

This phenomenon was firstly observed in [28], where Wu and Zhou suggested the use of

the sample dependent hypothesis space (SDHS) directly to construct the estimators. From the

so-called representation theorem in learning theory [Cucker and Smale,2001], the learning pro-

cedure in RKHS can be converted into such a problem, whose hypothesis space can be expressed

as a linear combination of the kernel functions evaluated atthe sample points with finitely many

coefficients. Thus, it implies that the generalization capabilities of learning in SDHS are not worse

than those of learning in RKHS in certain a sense. Furthermore, as SDHS is anm-dimensional

linear space, various optimization strategies such as the coefficient-based regularization strategies

[16], [28] and greedy-type schemes [Barron et al.,2008], [11] can be applied to construct the

estimator.
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In this paper, we consider the general coefficient-based regularization strategies in SDHS. Let

HK,z :=

{

m
∑

i=1

aiKxi
: ai ∈ R

}

be a SDHS, whereKt(·) = K(·, t) andK(·, ·) is a positive definite kernel. The coefficient-based

lq regularization strategy (lq regularizer) takes the form of

fz,λ,q = arg min
f∈HK,z

{

1

m

m
∑

i=1

(f(xi)− yi)
2 + λΩq

z
(f)

}

, (1)

whereλ = λ(m, q) > 0 is the regularization parameter andΩq
z
(f) (0 < q < ∞) is defined by

Ωq
z
(f) =

m
∑

i=1

|ai|q whenf =
m
∑

i=1

aiKxi
∈ HK,z.

A. Problem setting

In practice, the choice ofq in (1) is critical, since it embodies the properties of the anticipated

estimators such as sparsity and smoothness, and also takes some other perspectives such as

complexity and generalization capability into consideration. For example, forl2 regularizer, the

solution to (1) is the same as the solution to the regularizedleast squares (RLS) algorithm in

RKHS [Cucker and Smale,2001]

fz,λ = arg min
f∈HK

{

1

m

m
∑

i=1

(f(xi)− yi)
2 + λ‖f‖2HK

}

, (2)

whereHK is the RKHS associated with the kernelK. Furthermore, the solution can be an-

alytically represented by the kernel function [Cucker and Zhou,2007]. The obtained solution,

however, is smooth but not sparse, i.e., the nonzero coefficients of the solution are potentially

as many as the sampling points if no special treatment is taken. Thus,l2 regularizer is a good

smooth regularizer but not a sparse one. For0 < q < 1, there are many algorithms such as the

iteratively reweighted least squares algorithm [2] and iterative half thresholding algorithm [31]

to obtain a sparse approximation of the target function. However, all of these algorithms suffer

from the local minimum problem due to the non-convex natures. For q = 1, many algorithms

exist, say, iterative soft thresholding algorithm [1], LASSO [8], [24] and iteratively reweighted

least square algorithm [2], to yield sparse estimators of the target function. However, as far as the

sparsity is concerned, thel1 regularizer is somewhat worse than thelq (0 < q < 1) regularizer,

while as far as the training speed is concerned, thel1 regularizer is in turn slower than that

of the l2 regularizer. Thus, we can see that, different choices ofq may deduce estimators with
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different forms, properties, and attributions. Since the study of generalization capabilities lies

in the center of learning theory, we would like to ask the following question: what about the

generalization capabilities of thelq regularization schemes (1) for0 < q < ∞?

Answering the above question is of great importance, since it uncovers the role of the penalty

term in the regularization learning, which then further underlies the learning strategies. However,

it is known that the approximation capability of SDHS depends heavily on the choice of

the kernel, it is therefore almost impossible to give a general answer to the above question

independent of kernel functions. In this paper, we aim to provide an answer to the above question

when the widely used Gaussian kernel is utilized.

B. Related work and our contribution

There exists a huge number of theoretical analysis of kernelmethods, many of which are

treated in [Cucker and Smale,2001], [Cucker and Zhou,2007], [Caponnetto and DeVito,2007],

[5], [15], [20] and references therein. This means that various results on the learning rate of the

algorithm (2) are given. The recent work [13] suggested thatthe penalty‖f‖2HK
may not be the

optimal choice from a statistical point of view, that is, theRLS strategy may have a design flaw.

There may be an appropriate choice ofq in the following optimization strategy

f q
z,λ = arg min

f∈HK

{

1

m

m
∑

i=1

(f(xi)− yi)
2 + λ‖f‖qHK

}

(3)

such that the performance of learning process can be improved. To this end, Steinwart et al.

[22] derived aq-independent optimal learning rate of (3) in the minmax sense. Therefore, they

concluded that the RLS strategy (2) has no advantages or disadvantages compared to other values

of q in (3) from the viewpoint of learning theory. However, even without such a result, it is

unclear how to solve (3) whenq 6= 2. That is,q = 2 is currently the only feasible case, which

in turn makes RLS strategy the method of choice.

Differently, lq coefficient regularization strategy (1) is solvable for arbitrary 0 < q < ∞. Thus,

studying the learning performance of the strategy (1) with different q is more interesting. Based

on a series of work as [6], [16], [23], [25], [28], [30], we have shown that there is a positive

definite kernel such that the learning rate of the corresponding lq regularizer is independent of

q in the previous paper [10]. However, the problem is that the kernel constructed in [10] can

September 19, 2014 DRAFT



5

not be easily formulated in practice. Thus, seeking kernelsthat possess the similar property and

can be easily implemented is worth of investigation.

Fortunately, we show in the present paper that the well knownGaussian kernel possesses

similar property, that is, as far as the learning rate is concerned, alllq regularization schemes

(1) associated with the Gaussian kernel for0 < q < ∞ can realize the same almost optimal

theoretical rates. That is to say, the influence ofq on the learning rates of the learning schemes

(1) with Gaussian kernel is negligible. Here, we emphasize that our conclusion is based on

the understanding of attaining the same almost optimal learning rate by appropriately tuning

the regularization parameterλ. Thus, in applications,q can be arbitrarily specified, or specified

merely by other no generalization criteria (like complexity, sparsity, etc.).

C. Organization

The reminder of the paper is organized as follows. In Section2, after reviewing some basic

conceptions of statistical learning theory, we give the main results of this paper, that is, the

learning rates oflq (0 < q < ∞) regularizers associated with Gaussian kernel are provided. In

section 3, the proof of the main result is given.

II. GENERALIZATION CAPABILITIES lq COEFFICIENT REGULARIZATION LEARNING

A. A fast review of statistical learning theory

Let M > 0, X ⊆ Rd be an input space andY ⊆ [−M,M ] be an output space. Letz =

(xi, yi)
m
i=1 be a random sample set with a finite sizem ∈ N, drawn independently and identically

according to an unknown distributionρ on Z := X × Y , which admits the decomposition

ρ(x, y) = ρX(x)ρ(y|x).

Suppose further thatf : X → Y is a function that one uses to model the correspondence between

x andy, as induced byρ. A natural measurement of the error incurred by usingf of this purpose

is the generalization error, defined by

E(f) :=
∫

Z
(f(x)− y)2dρ,

which is minimized by the regression function [Cucker and Smale,2001], defined by

fρ(x) :=
∫

Y
ydρ(y|x).
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However, we do not know this ideal minimizerfρ due toρ is unknown. Instead, we can turn to

the random examples sampled according toρ.

Let L2
ρ
X

be the Hilbert space ofρX square integrable function defined onX, with norm

denoted by‖ · ‖ρ. Under the assumptionfρ ∈ L2
ρ
X

, it is known that, for everyf ∈ L2
ρX

, there

holds

E(f)− E(fρ) = ‖f − fρ‖2ρ. (4)

The task of the least squares regression problem is then to construct functionfz that approximates

fρ, in the sense of norm‖ · ‖ρ, using the finitely many samplesz.

B. Learning rate analysis

Let

Gσ(x, x
′) := Gσ(x− x′) := exp{−‖x− x′‖22/σ2}, x, x′ ∈ X

be the Gaussian kernel, whereσ > 0 is called the width ofGσ. The SDHS associated with

Gσ(·, ·) is then defined by

Gσ,z :=

{

m
∑

i=1

aiGσ(xi, ·) : ai ∈ R

}

.

We are concerned with the followinglq coefficient-based regularization strategy

fz,λ,q = arg min
f∈Gσ,z

{

1

m

m
∑

i=1

(f(xi)− yi)
2 + λ

m
∑

i=1

|ai|q
}

, (5)

wheref(x) =
∑m

i=1 aiGσ(xi, x). The main purpose of this paper is to derive the optimal bound

of the following generalization error

E(fz,λ,q)− E(fρ) = ‖fz,λ,q − fρ‖2ρ (6)

for all 0 < q < ∞.

Generally, it is impossible to obtain a nontrivial rate of convergence result of (6) without

imposing strong restrictions onρ [7, Chapter 3] . Then a large portion of learning theory proceeds

under the condition thatfρ is in a known setΘ. A typical choice ofΘ is a set of compact sets,

which are determined by some smoothness conditions [4]. Such a choice ofΘ is also adopted

in our analysis. LetX = Id := [0, 1]d, c0 be a positive constant,v ∈ (0, 1], andr = u + v for
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someu ∈ N0 := {0} ∪ N. A function f : Id → R is said to be(r, c0)-smooth if for every

α = (α1, · · · , αd), αi ∈ N0,
∑d

j=1 αj = u, the partial derivatives ∂uf
∂x1

α1 ...∂xd
αd

exist and satisfy
∣

∣

∣

∣

∣

∂uf

∂x1
α1 · · ·∂xd

αd
(x)− ∂uf

∂x1
α1 · · ·∂xd

αd
(z)

∣

∣

∣

∣

∣

≤ c0‖x− z‖v2.

Denote byF (r,c0) the set of all(r, c0)-smooth functions. In our analysis, we assume the prior

informationfρ ∈ F (r,c0) is known.

Let πM t denote the clipped value oft at ±M , that is,πM t := min{M, |t|}sgnt, where sgnt

represents the signum function oft. Then it is obvious [7], [22], [35] that for allt ∈ R and

y ∈ [−M,M ] there holds

E(πMfz,λ,q)− E(fρ) ≤ E(fz,λ,q)− E(fρ).

The following theorem shows the learning capability of the leaning strategy (5) for arbitrary

0 < q < ∞.

Theorem 1:Let r > 0, c0 > 0, δ ∈ (0, 1), 0 < q < ∞, fρ ∈ F r,c0, andfz,λ,q be defined as in

(5). If σ = m− 1
2r+d , and

λ =











M2m
−12r−6d+2rq+qd

4r+2d , 0 < q ≤ 2.

M2m− 4r+2d
2r+d , q > 2,

then, for arbitraryε > 0, with probability at least1− δ, there holds

E(πMfz,λ,q)− E(fρ) ≤ C log
4

δ
m− 2r−ε

2r+d , (7)

whereC is a constant depending only ond, r, c0, q andM .

C. Remarks

In this subsection, we give certain explanations and remarks of Theorem 1. We depict it into

four directions: remarks on the learning rate, the choice ofthe width of Gaussian kernel, the role

of the regularization parameter, and the relationship betweenq and the generalization capability.

1) Learning rate analysis:It can be found in [7] and [4] that if we only knowfρ ∈ F r,c0, then

the learning rates of all learning strategies based onm samples can not be faster thanm− 2r
2r+d .

More specifically, letM(F r,c0) be the class of all Borel measuresρ on Z such thatfρ ∈ F r,c0.

We enter into a competition over all estimatorsAm : z → fz and define

em(F r,c0) := inf
Am

sup
ρ∈M(Fr,c0 )

Eρm(‖fρ − fz‖2ρ).

September 19, 2014 DRAFT
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It is easy to see thatem(F r,c0) quantitively measures the quality offz. Then it can be found in

[7, Chapter 3] or [4] that

em(F r,c0) ≥ Cm− 2r
2r+d , m = 1, 2, . . . , (8)

whereC is a constant depending only onM , d, c0 andr.

Modulo the arbitrary small positive numberε, the established learning rate (7) is asymptotically

optimal in a minmax sense. If we notice the identity:

Eρm(E(fρ)− E(fz,λ,q)) =
∫ ∞

0
Pρm{E(fρ)− E(fz,λ,q) > ε}dε.

then there holds

C1m
− 2r

2r+d ≤ em(F r,c0) ≤ sup
fρ∈Fr,c0

Eρm {E(πMfz,λ,q)− E(fρ)} ≤ C2m
− 2r

2r+d
+ε, (9)

whereC1 andC2 are constants depending only onr, c0, M andd.

Due to (9), we know that the learning strategy (5) is almost the optimal method if the

smoothness information offρ is known. It should be highlighted that the above optimalityis given

in the background of the worst case analysis. That is, for a concretefρ, the learning rate of the

strategy (5) may be much faster thanm− 2r
2r+d . For example, if the concretefρ ∈ F2r,c0 ⊂ F r,c0,

then the learning rate of (5) can achieve tom− 4r
4r+d

+ε. Summarily, the conception of optimal

learning rate is based onF r,c0 rather than a fixed regression functions.

2) Choice of the width:The width of Gaussian kernel determines both approximationca-

pability and complexity of the corresponding RKHS, and thusplays a crucial role in the

learning process. Admittedly, as a function ofσ, the complexity of the Gaussian RKHS is

monotonically decreasing. Thus, due to the so-called bias and variance problem in learning

theory [Cucker and Zhou,2007], there exists an optimal choice of σ for the Gaussian kernel

method. Since SDHS is essentially anm-dimensional linear space and the Gaussian RKHS is an

infinite space for arbitraryσ (kernel width) [14], the complexity of the Gaussian SDHS maybe

smaller than the Gaussian RKHS at the first glance. Hence, there naturally arises the following

question: does the optimalσ of the Gaussian SDHS learning coincide with that of the Gaussian

RKHS learning? Theorem 1 together with [5, Corollary 3.2] demonstrate that the optimal widths

of the above two strategies are asymptomatically identical. That is, if the smooth information of

the regression function is known, then the optimal choices of σ of both learning strategies (5)

and (2) are the same. The above phenomenon can be explained asfollows. LetBHσ be the unit
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ball of the Gaussian RKHS andB2 :=
{

f ∈ Gσ,z :
1
n

∑n
i=1 |f(xi)|2 ≤ 1

}

be thel2 empirical ball.

Denote byN2(BHσ , ε) the l2-empirical covering number [16], whose definition can be found in

the descriptions above Lemma 5 in the present paper. Then it can be found in [20, Theorem

2.1] that for anyε > 0, there holds

logN2(BHσ , ε) ≤ Cp,µ,dσ
(p/2−1)(1+µ)dε−p, (10)

where p is an arbitrary real number in(0, 2] and µ is an arbitrary positive number. For the

Gaussian SDHS,Gσ,z, on one hand, we can use the fact thatGσ,z ⊂ Hσ and deduce

logN2(B2, ε) ≤ C ′
p,µ,dσ

(p/2−1)(1+µ)dε−p, (11)

whereC ′
p,µ,d is a constant depending only onp, µ andd. On the other hand, it follows from [7,

Lemma 9.3] that

logN2(B2, ε) ≤ Cdm log
4 + ε

ε
(12)

where the finite-dimensional property ofGσ,z is used. Therefore, it should be highlighted that

the finite-dimensional property ofGσ,z is used if

Cdm log
4 + ε

ε
≤ C ′

p,µ,dσ
(p/2−1)(1+µ)dε−p,

which always implies thatσ is very small (may be smaller than1
m

).

However, to deduce a good approximation capability ofGσ,z, it can be deduced from [12]

that σ can not be very small. Thus, we use (11) rather than (12) to describe the complexity

of Gσ,z. Noting (10), whenσ is not very small (corresponding to1/m), the complexity ofGσ,z

asymptomatically equals to that ofHσ. Under this circumstance, recalling that the optimal widths

of the learning strategies (2) and (5) may not be very small, the capacities ofGσ,z andHσ are

asymptomatically identical. Therefore, the optimal choice of σ in (5) are the same as that in (2).

3) Importance of the regularization term:We can address the regularized learning model as a

collection of empirical minimization problems. Indeed, let B be the unit ball of a space related to

the regularization term and consider the empirical minimization problem inrB for somer > 0.

As r increases, the approximation error forrB decreases and its sample error increases. We

can achieve a small total error by choosing the correct valueof r and performing empirical

minimization in rB such that the approximation error and sample error are asymptomatically

identical. The role of regularization term is to force the algorithm to choose the correct value
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of r for empirical minimization [13] and then provides a method of solving the bias-variance

problem. Therefore, the main role of the regularization term is to control the capacity of the

hypothesis space.

Compared with the regularized least squares strategy (2), aconsensus is thatlq coefficient

regularization schemes (5) may bring a certain additional interest such as the sparsity for suitable

choice ofq [16]. However, it should be noticed that this assertion may not always be true.

There are usually two criteria to choose the regularizationparameter in such a setting:

(a) the approximation error should be as small as possible;

(b) the sample error should be as small as possible.

Under the criterion (a),λ should not be too large, while under the criterion (b),λ can not be

too small. As a consequence, there is an uncertainty principle in the choice of the optimalλ for

generalization. Moreover, if the sparsity of the estimatoris needed, another criterion should be

also taken into consideration, that is,

(c) The sparsity of the estimator should be as sparse as possible.

The sparsity criterion (c) requires thatλ should be large enough, since the sparsity of the

estimator monotonously decreases with respect toλ. It should be pointed out that the optimal

λ0 for generalization may be smaller than the smallest value ofλ to guarantee the sparsity.

Therefore, to obtain the sparse estimator, the generalization capability may degrade in certain a

sense. Summarily,lq coefficient regularization scheme may brings a certain additional attribution

of the estimator without sacrificing the generalization capability but not always so. It may depend

on the distributionρ, the choice ofq and the samples. In a word, thelq coefficient regularization

scheme (5) provides a possibility to bring other advantageswithout degrading the generalization

capability. Therefore, it may outperform the classical kernel methods in certain a sense.

4) q and learning rate:Generally speaking, the generalization capability oflq regularization

scheme (5) may depend on the width of Gaussian kernel, the regularization parameterλ, the

behavior of priors, the size of samplesm, and, obviously, the choice ofq. While from Theorem 1

and (9), it has been demonstrated that the learning schemes defined by (5) can indeed achieve the

asymptotically optimal rates for all choices ofq. In other words, the choice ofq has no influence

on the learning rate, which in turn means thatq should be chosen according to other non-

generalization considerations such as the smoothness, sparsity, and computational complexity.
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Fig. 1. The above three figures show the routes of the change ofl2, l1 and l1/2 regularizers, respectively.

This assertion is not surprising if we castlq regularization schemes (5) into the process of

empirical minimization. From the above analysis, it is known that the width of Gaussian kernel

depicts the complexity of thelq empirical unit ball and the regularization parameter describes

the choice of the radius of thelq ball. It should be also pointed out that the choice ofq implies

the route of the change in order to find the hypothesis space with the appropriate capacity. A

regularization scheme can be regarded as the following process according to the bias and variance

problem. One first chooses a large hypothesis space to guarantee the small approximation error,

and then shrinks the capacity of the hypothesis space until the sample error and approximation

error being asymptomatically identical. It can be found in Fig.1 that lq regularization schemes

with differentq may possess different paths of shrinking, and then derive estimators with different

attributions. From Fig.1, it also shows that, by appropriately tuning the regularization (the radius

of the lq empirical ball), we can always obtainlq regularizer estimators for all0 < q < ∞
with the similar learning rates. In such a sense, it can be concluded that the learning rate oflq

regularization learning is independent of the choice ofq.

D. Comparisons

In this subsection, we give many comparisons between Theorem 1 and the related work to

show the novelty of our result. We divide the comparisons into the following three categories. At

first, we illustrate the difference between learning in RKHSand SDHS associated with Gaussian

kernel. Then we compare our result with the existing resultson coefficient-based regularization

in SDHS. Finally, we refer certain papers concerning the choice of regularization exponentq

and show the novelty of our result.
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1) Learning in RKHS and SDHS with Gaussian kernel:Kernel methods with Gaussian

kernels are one of the classes of the standard and state-of-the-art learning strategies. Therefore,

the corresponding properties such as the covering numbers,RKHS norms, formats of the elements

in the RKHS, associated with Gaussian kernels were studied in [14], [19], [21], [34]. Based on

these analyses, the learning capabilities of Gaussian kernel learning were thoroughly revealed in

[5], [9], [20], [29], [32] and references therein. For classification, [20] showed that the learning

rates for support vector machines with hinge loss and Gaussian kernel can attain the order

of m−1. For regression, it was shown in [5] that the regularized least squares algorithm with

Gaussian kernel can achieve the almost optimal learning rate if the smoothness information of

the regression function is given.

However, the learning capability of the coefficient-based regularization scheme (5) remains

open. It should be stressed that the roles of regularizationterms in (5) and (2) are distinct even

though the solutions to these two schemes are identical forq = 2. More specifically, without

the regularization term, there are infinite many solutions to the least squares problem in the

Gaussian RKHS. In order to obtain an expected and unique solution, we should impose a certain

structure upon the solution, which can be achieved via introducing a specified regularization

term. Therefore, the regularized least squares algorithm (2) can be regarded as a structural risk

minimization strategy since it chooses a solution with the simplest structure among the infinite

many solutions. However, due to the positive definiteness ofthe Gaussian kernel, there is a

unique solution to (5) withλ = 0 and the role of regularization can be regarded to improve

the generalization capability only. Summarily, the introduction of regularization in (2) can be

regarded as a passive choice, while that in (5) is an active operation.

The above difference requires different technique to analyze the performance of strategy (5).

Indeed, the most widely used method was proposed in [28]. Based on [26], [28] pointed out

that the generalization error can be divided into three terms: approximation error, sample error

and hypothesis space. Basically, the generalization errorcan be bounded via the following three

steps:

(S1) Find an alternative estimator outside the SDHS to approximate the regression function;

(S2) Find an approximation of the alternative function in SDHS and deduce the hypothesis

error;

(S3) Bound the sample error which describes the distance between the approximant in SDHS
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and thelq regularizer.

In this paper, we also employ this technique to analyze the performance of the learning strategy

(5). Our result shows that, similar to the regularized leastsquares algorithm [5],lq coefficient-

based regularization scheme (5) can also achieve the almostoptimal learning rate if the smooth-

ness information of the regression function is given.

2) lq regularizer with fixedq: There have been several papers that focus on the generalization

capability analysis of thelq regularization scheme (1). [28] was the first paper, to the best

of our knowledge, to show a mathematical foundation of learning algorithms in SDHS. They

claimed that the data dependent nature of the algorithm leads to an extra hypothesis error,

which is essentially different form regularization schemes with sample independent hypothesis

spaces (SIHSs). Based on this, the authors proposed a coefficient-based regularization strategy

and conducted a theoretical analysis of the strategy by dividing the generalization error into

approximation error, sample error and hypothesis error. Following their work, [30] derived a

learning rate ofl1 regularizer via bounding the regularization error, sampleerror and hypothesis

error, respectively. Their result was improved in [16] by adopting a concentration technique with

l2 empirical covering numbers to tackle the sample error. On the other hand, forlq (1 ≤ q ≤ 2)

regularizers, [25] deduced an upper bound for the generalization error by using a different method

to cope with the hypothesis error. Later, the learning rate of [25] was improved further in [6]

by giving a sharper estimation of the sample error.

In all those researches, both spectrum assumption of the regression functionfρ and the

concentration property ofρX should be satisfied. Noting this, forl2 regularizer, [23] conducted

a generalization capability analysis forl2 regularizer by using the spectrum assumption to the

regression function only. Forl1 regularizer, by using a sophisticated functional analysismethod,

[33] and [18] built the regularized least squares algorithmon the reproducing kernel Banach

space (RKBS), and proved that the regularized least squaresalgorithm in RKBS is equivalent

to l1 regularizer if the kernel satisfies some restricted conditions. Following this method, [17]

deduced a similar learning rate for thel1 regularizer and eliminated the concentration assumption

on the marginal distribution .

To intrinsically characterize the generalization capability of a learning strategy, the essential

generalization bound rather than the upper bound is desired, that is, we must deduce both the

lower and upper bounds for the learning strategy and prove that the upper and lower bounds
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can be asymptotically identical. Under this circumstance,we can essentially deduce the learning

capability of the learning scheme. All of the above results for lq regularizers with fixedq were

only concerned with the upper bound. Thus, it is generally difficult to reveal their essential

learning capabilities. Nevertheless, as shown by Theorem 1, our established learning rate is

essential. It can be found in (9) that iffρ ∈ F r,c0, then the deduced learning rate cannot be

improved.

3) The choice ofq: [Blanchard et al.,2008] is the first paper, to the best of our knowledge,

that focuses on the choice of the optimalq for the kernel method. Indeed, as far as the sample

error is concerned, [Blanchard et al.,2008] pointed out that there is an optimal exponentq 6= 2

for support vector machine with hinge loss. Then, [13] foundthat this assertion also held for the

regularized least square strategy (3). That is, as far as thesample error is concerned, regularized

least squares may have a design flaw. However, in [22], Steinwart et al. derived aq-independent

optimal learning rate of (3) in a minmax sense. Therefore, they concluded that the RLS algorithm

(2) had no advantages or disadvantages compared with other values ofq in (3) from the statistical

point of view.

Sincelq coefficient regularization strategy (1) is solvable for arbitrary 0 < q < ∞, and different

q may derive different attributions of the estimator, studying the dependence between learning

performance of learning strategy (1) andq is more interesting. This topic was first studied in

[10], where we have shown that there is a positive definite kernel such that the learning rate of

the correspondinglq regularizer is independent ofq. However, the kernel constructed in [10] can

not be easily formulated in practice. Thus, we turn to study the dependency of the generalization

capabilities andq of lq regularization learning with the widely used Gaussian kernel. Fortunately,

we find that the similar conclusion also holds for the Gaussian kernel, which is witnessed in

Theorem 1 in this paper.

III. PROOF OFTHEOREM 1.

A. Error decomposition

For an arbitraryu = (u1, . . . , ud) ∈ Id, defineF (0)
ρ (u) = fρ(u). To construct a functionF (1)

ρ

defined on[−1, 1]d, we can define

F (1)
ρ (u1, . . . , uj−1,−uj, uj+1, . . . , ud) = F (0)

ρ (u1, . . . , uj−1, uj, uj+1, . . . , ud)
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for arbitrary j = 1, 2, . . . , d. Finally, for everyj = 1, . . . , d, we define

Fρ(u1, uj−1, uj + 2, uj+1, . . . , ud) = F (1)
ρ (u1, . . . , uj−1, uj, uj+1, . . . , ud).

Therefore, we have constructed a functionFρ defined onRd. From the definition, it follows that

Fρ is an even, continuous and periodic function with respect toarbitrary variableui, i = 1, . . . , d.

In order to give an error decomposition strategy forE(πMfz,λ,q)−E(fρ), we should construct

a functionf0 ∈ HK as follows. Define

f0(x) := K ∗ Fρ :=
∫

Rd
K(x− u)Fρ(u)du, x ∈ Id, (13)

where

K(x) :=
r
∑

j=1

(

r
j

)

(−1)1−j 1

jd

(

2

σ2π

)d/2

G jσ
√

2

(x),

Denote byHσ and‖ · ‖σ the RKHS associated withGσ and its corresponding RKHS norm,

respectively. To prove Theorem 1, the following error decomposition strategy is required.

Proposition 1: Let fz,λ,q andf0 be defined as in (5) and (13), respectively. Then we have

E(πMfz,λ,q)− E(fρ) ≤ E(f0)− E(fρ) +
1

m
‖f0‖2σ

+

(

Ez(πMfz,λ,q) + λ
m
∑

i=1

|ai|q
)

−
(

Ez(f0) +
1

m
‖f0‖2σ

)

+ Ez(f0)− E(f0) + E(πMfz,λ,q)− Ez(πMfz,λ,q),

whereEz(f) = 1
m

∑m
i=1(yi − f(xi))

2.

Upon making the short hand notations

D(m) := E(f0)− E(fρ) +
1

m
‖f0‖2σ,

S(m, λ, q) := Ez(f0)− E(f0) + E(πMfz,λ,q)− Ez(πMfz,λ,q),

and

P(m, λ, q) :=

(

Ez(πMfz,λ,q) + λ
m
∑

i=1

|ai|q
)

−
(

Ez(f0) +
1

m
‖f0‖2σ

)

for the approximation error, sample error and hypothesis error, respectively, then we have

E(πMfz,λ,q)− E(fρ) ≤ D(m) + S(m, λ, q) + P(m, λ, q). (14)
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B. Approximation error estimation

Let A ⊆ Rd. Denote byC(A) the space of continuous functions defined onA endowed with

norm ‖ · ‖A. Denote by

ωr(f, t, A) = sup
‖h‖2≤t

‖∆r
h,A(f, ·)‖A

the r-th modulus of smoothness [3], where ther-th difference∆h,A(f, ·) is defined by

∆r
h,A(f,x) =























∑r
j=0







r

j





 (−1)r−jf(x+ jh) if x ∈ Ar,h

0 if x /∈ Ar,h

for h = (h1, . . . , hd) ∈ Rd andAr,h := {x ∈ A : x + sh ∈ A, for all s ∈ [0, r]}. It is well

known [3] that

ωr(f, t, A) ≤
(

1 +
t

s

)r

ωr(f, s, A). (15)

To bound the approximation error, the following three lemmas are required.

Lemma 1:Let r > 0. If fρ ∈ C(Id), thenFρ ∈ C(Rd) satisfies

i) Fρ(x) = fρ(x), x ∈ Id.

ii) ‖Fρ‖Rd = ‖fρ‖Id.
iii) ωr(Fρ, t,R

d) ≤ ωr(fρ, t, I
d).

Proof: Based on the definition ofFρ, it suffices to prove the third assertion. To this end, for

an arbitraryv = (v1, . . . , vd) ∈ Rd, noting that the period ofFρ with respect to each variable is

2, there exists akj,h such thatv + jh− 2kj,h ∈ [−1, 1]d. That is,

∆r
h,Rd(Fρ, v) =

r
∑

j=0







r

j





 (−1)r−jFρ(v + jh) =
r
∑

j=0







r

j





 (−1)r−jFρ(v − 2kj,h + jh)

SinceFρ is even, we can deduce

∆r
h,Rd(Fρ, v) =

r
∑

j=0







r

j





 (−1)r−jFρ(|v − 2kj,h + jh|)

=
r
∑

j=0







r

j





 (−1)r−jfρ(|v − 2kj,h + jh|)

Hence, by the definition of the modulus of smoothness, we have

ωr(Fρ, t,R
d) ≤ ωr(fρ, t, I

d),
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which finishes the proof of Lemma 1.

Lemma 2:Let r > 0 andf0 be defined as in (13). Iffρ ∈ C(Id), then

‖fρ − f0‖Id ≤ Cωr(fρ, σ, I
d),

whereC is a constant depending only ond andr.

Proof: It follows from the definition off0 that

f0(x) =
∫

Rd
K(x− u)Fρ(u)du

=
r
∑

j=1







r

j





 (−1)1−j 1

jd

(

2

σ2π

)d/2 ∫

Rd
G σ

√

2
(h)Fρ(x+ jh)jddh

=
∫

Rd

(

2

σ2π

)d/2

Gσ/
√
2(h)







r
∑

j=1







r

j





 (−1)1−jFρ(x+ jh)





 dh.

As
∫

Rd

(

2

σ2π

)d/2

Gσ/
√
2(h)dh = 1,

it follows from Lemma 1 that

|f0(x)− fρ(x)|

=

∣

∣

∣

∣

∣

∣

∣

∫

Rd

(

2

σ2π

)d/2

Gσ/
√
2(h)







r
∑

j=1







r

j





 (−1)1−jFρ(x+ jh)





 dh− Fρ(x)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∫

Rd

(

2

σ2π

)d/2

Gσ/
√
2(h)







r
∑

j=1







r

j





 (−1)1−jFρ(x+ jh)− Fρ(x)





 dh

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∫

Rd

(

2

σ2π

)d/2

Gσ/
√
2(h)







r
∑

j=0







r

j





 (−1)2r+j−1Fρ(x+ jh)





 dh

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Rd
(−1)r+1

(

2

σ2π

)d/2

Gσ/
√
2(h)∆

r
h,Rd(Fρ, x)dh

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

Rd
(−1)r+1

(

2

σ2π

)d/2

Gσ/
√
2(h)ωr(fρ, ‖h‖2, Id)dh

∣

∣

∣

∣

∣

.

Then, the same method as that of [5] yields that

‖fρ − f0‖Id ≤ Cωr(fρ, σ, I
d).
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Furthermore, it can be easily deduced from [5, Theorem 2.3] and Lemma 1 that the following

Lemma 3 holds.

Lemma 3:Let f0 be defined as in (13). Then we havef0 ∈ Hσ with

‖f0‖σ ≤ (σ
√
π)−d/2(2r − 1)σ−d/2‖fρ‖Id, and ‖f0‖Id ≤ (2r − 1)‖fρ‖Id.

Lemma 3 together with Lemma 2 andfρ ∈ F r,c0 yields the following approximation error

estimation.

Proposition 2: Let r > 0. If fρ ∈ F r,c0, then

D(m) ≤ C
(

σ2r +
1

mσd

)

,

whereC is a constant depending only ond, c0 andr.

C. Sample error estimation

In this subsection, we will bound the sample errorS(m, λ, q). Upon using the short hand

notations

S1(m) := {Ez(f0)− Ez(fρ)} − {E(f0)− E(fρ)}

and

S2(m, λ, q) := {E(πMfz,λ,q)− E(fρ)} − {Ez(πMfz,λ,q)− Ez(fρ)},

we have

S(m, λ, q) = S1(m) + S2(m, λ, q). (16)

To boundS1(m), we need the following well known Bernstein inequality [16].

Lemma 4:Let ξ be a random variable on a probability spaceZ with varianceγ2 satisfying

|ξ −Eξ| ≤ Mξ for some constantMξ. Then for any0 < δ < 1, with confidence1− δ, we have

1

m

m
∑

i=1

ξ(zi)− Eξ ≤ 2Mξ log
1
δ

3m
+

√

2σ2 log 1
δ

m
.

By the help of Lemma 4, we provide an upper bound estimate ofS1(m).

Proposition 3: For any0 < δ < 1, with confidence1− δ
2
, there holds

S1(m) ≤ 7(3M + (2r − 1)M)2 log 2
δ
)

3m
+

1

2
D(m)
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Proof: Let the random variableξ on Z be defined by

ξ(z) = (y − f0(x))
2 − (y − fρ(x))

2 z = (x, y) ∈ Z.

Since|fρ(x)| ≤ M and‖f0‖Id ≤ Cr := (2r − 1)M almost everywhere, we have

|ξ(z)| = (fρ(x)− f0(x))(2y − f0(x)− fρ(x))

≤ (M + Cr)(3M + Cr) ≤ Mξ := (3M + Cr)
2

and almost surely

|ξ − Eξ| ≤ 2Mξ.

Moreover, we have

E(ξ2) =
∫

Z
(f0(x) + fρ(x)− 2y)2(f0(x)− fρ(x))

2dρ ≤ Mξ‖fρ − f0‖2ρ,

which implies that the varianceγ2 of ξ can be bounded asσ2 ≤ E(ξ2) ≤ MξD(m). Now

applying Lemma 4, with confidence1− δ
2
, we have

S1(m) =
1

m

m
∑

i=1

ξ(zi)−Eξ ≤ 4Mξ log
2
δ

3m
+

√

2MξD(m) log 2
δ

m

≤ 7(3M + Cr)
2 log 2

δ

3m
+

1

2
D(m).

To boundS2(m, λ, q), an l2 empirical covering number [16] should be introduced. Let(M, d̃)

be a pseudo-metric space andT ⊂ M a subset. For everyε > 0, the covering numberN (T, ε, d̃)

of T with respect toε and d̃ is defined as the minimal number of balls of radiusε whose union

coversT , that is,

N (T, ε, d̃) := min







l ∈ N : T ⊂
l
⋃

j=1

B(tj , ε)







for some{tj}lj=1 ⊂ M, whereB(tj , ε) = {t ∈ M : d̃(t, tj) ≤ ε}. The l2-empirical covering

number of a function set is defined by means of the normalizedl2-metric d̃2 on the Euclidean

spaceRd given in with d̃2(a,b) =
(

1
m

∑m
i=1 |ai − bi|2

) 1
2 for a = (ai)

m
i=1,b = (bi)

m
i=1 ∈ Rm.

Definition 1: Let F be a set of functions onX, x = (xi)
m
i=1, and

F|x := {(f(xi))
m
i=1 : f ∈ F} ⊂ Rm.
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SetN2,x(F , ε) = N (F|x, ε, d̃2). The l2-empirical covering number ofF is defined by

N2(F , ε) := sup
m∈N

sup
x∈Sm

N2,x(F , ε), ε > 0.

The following two lemmas can be easily deduced from [20, Theorem 2.1] and [23], respec-

tively.

Lemma 5:Let 0 < σ ≤ 1, X ⊂ Rd be a compact subset with nonempty interior. Then for all

0 < p ≤ 2 and allµ > 0, there exists a constantCp,µ,d > 0 independent ofσ such that for all

ε > 0, we have

logN2(BHσ , ε) ≤ Cp,µ,dσ
(p/2−1)(1+µ)dε−p.

Lemma 6:Let F be a class of measurable functions onZ. Assume that there are constants

B, c > 0 andα ∈ [0, 1] such that‖f‖∞ ≤ B andEf 2 ≤ c(Ef)α for everyf ∈ F . If for some

a > 0 andp ∈ (0, 2),

logN2(F , ε) ≤ aε−p, ∀ε > 0, (17)

then there exists a constantc′p depending only onp such that for anyt > 0, with probability at

least1− e−t, there holds

Ef − 1

m

m
∑

i=1

f(zi) ≤
1

2
η1−α(Ef)α + c′pη + 2

(

ct

m

)
1

2−α

+
18Bt

m
, ∀f ∈ F , (18)

where

η := max

{

c
2−p

4−2α+pα

(

a

m

) 2
4−2α+pα

, B
2−p
2+p

(

a

m

) 2
2+p

}

.

We are now in a position to deduce an upper bound estimate forS2(m, λ, q).

Proposition 4: Let 0 < δ < 1 and fz,λ,q be defined as in (5). Then for arbitrary0 < p ≤ 2

and arbitraryµ > 0, there exists a constantC depending only ond, µ, p andM such that

S2(m, λ, q) ≤ 1

2
{E(fm,λ,q)− E(fρ)}+ C log

2

δ
m− 2

2+pσ
(p−2)(1+µ)d

2+p A(λ,m, q, p)

with confidence at least1− δ
2
, where

A(λ,m, q, p) :=











(M−2λ)
−2p

q(2+p) , 0 < q ≤ 1,

m
2p(q−1)
q(2+p) (M−2λ)−

2p
q(2+p) , q ≥ 1.

Proof: We apply Lemma 6 to the set of functionsFRq , where

FRq :=
{

(y − πMf(x))2 − (y − fρ(x))
2 : f ∈ BRq

}

(19)
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and

BRq :=

{

f =
m
∑

i=1

aiGσ(xi, x) : ‖f‖σ ≤ Rq

}

.

Each functiong ∈ FRq has the form

g(z) = (y − πMf(x))2 − (y − fρ(x))
2, f ∈ BRq ,

and is automatically a function onZ. Hence

Eg = E(f)− E(fρ) = ‖πMf − fρ‖2ρ

and
1

m

m
∑

i=1

g(zi) = Ez(πMf)− Ez(fρ),

wherezi := (xi, yi). Observe that

g(z) = (πMf(x)− fρ(x))((πMf(x)− y) + (fρ(x)− y)).

Therefore,

|g(z)| ≤ 8M2

and

Eg2 =
∫

Z
(2y − πMf(x)− fρ(x))

2(πMf(x)− fρ(x))
2dρ ≤ 16M2Eg.

For g1, g2 ∈ FRq and arbitrarym ∈ N, we have
(

1

m

m
∑

i=1

(g1(zi)− g2(zi))
2

)1/2

≤
(

4M

m

m
∑

i=1

(f1(xi)− f2(xi))
2

)1/2

It follows that

N2,z(FRq , ε) ≤ N2,x

(

BRq ,
ε

4M

)

≤ N2,x

(

B1q ,
ε

4MRq

)

,

which together with Lemma 5 implies

logN2,z(FRq , ε) ≤ Cp,µ,dσ
p−2
2

(1+µ)d(4MRq)
pε−p.

By Lemma 6 withB = c = 16M2, α = 1 anda = Cp,µ,dσ
p−2
2

(1+µ)d(4MRq)
p, we know that for

any δ ∈ (0, 1), with confidence1 − δ
2
, there exists a constantC depending only ond such that

for all g ∈ FRq

Eg − 1

m

m
∑

i=1

g(zi) ≤
1

2
Eg + Cη + C(M + 1)2

log(4/δ)

m
.
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Here

η = {16M2}
2−p
2+pC

2
2+p

p,µ,dm
− 2

2+pσ
p−2
2

(1+µ)d 2
2+pR

2p
2+p
q .

Hence, we obtain

Eg − 1

m

m
∑

i=1

g(zi) ≤
1

2
Eg + {16(M + 1)2}

2−p
2+pC

2
2+p

p,µ,dm
− 2

2+pσ
p−2
2

(1+µ)d 2
2+pR

2p
2+p
q log

4

δ
.

Now we turn to estimateRq. It follows form the definition offz,λ,q that

λ
m
∑

i=1

|ai|q ≤ Ez(0) + λ · 0 ≤ M2.

Thus,
m
∑

i=1

|ai| ≤











(
∑m

i=1 |ai|q)
1
q ≤ (M2/λ)

1/q
, 0 < q < 1,

m1− 1
q (
∑m

i=1 |ai|q)
1
q ≤ m1−1/q (M2/λ)

1/q
, q ≥ 1.

On the other hand,

‖fz,λ,q‖σ =

∥

∥

∥

∥

∥

m
∑

i=1

aiKσ(xi, ·)
∥

∥

∥

∥

∥

σ

≤
m
∑

i=1

|ai|.

That is,

‖fz,λ,q‖σ ≤











(M2/λ)
1/q

, 0 < q < 1,

m1−1/q (M2/λ)
1/q

, q ≥ 1.

Set

Rq :=











(M2/λ)
1/q

, 0 < q < 1,

m1−1/q (M2/λ)
1/q

, q ≥ 1,

we finishes the proof of Proposition 4.

D. Hypothesis error estimation

In this subsection, we give an error estimate forP(m, λ, q).

Proposition 5: If fz,λ,q andf0 are defined in (1) and (13) respectively, then we have

P(m, λ, q) ≤











m2−q/2λM q, 0 < q ≤ 2

λmM q, q > 2.

Proof: If the vector b := (b1, . . . , bm)
T satisfies(Im + Gσ[x])b = y, then there holds

b = y − Gσ[x]b. Here, y := (y1, . . . , ym)
T and Gσ[x] be them × m matrix with its el-

ements being(Gσ(xi, xj))
m
i,j=1. Then it follows from the well known representation theorem

[Cucker and Zhou,2007] that

fz :=
m
∑

i=1

biGσ(xi, ·)
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is the solution to

arg min
f∈Hσ

{

Ez(f) +
1

m
‖f‖2σ

}

.

Hence, if we writefz,λ,q =
∑m

i=1 aiGσ(xi, x), then

Ez(πMfz,λ,q) + λ
m
∑

i=1

|ai|q ≤ Ez(fz,λ,q) + λ
m
∑

i=1

|ai|q ≤ Ez(fz) + λ
m
∑

i=1

|bi|q

= Ez(fz) + λ
m
∑

i=1

|yi − fz(xi)|q

≤ Ez(fz) +











m2−q/2λ(Ez(fz))q/2, 0 < q ≤ 2,

λm(Ez(fz))q/2, q > 2

≤ Ez(fz) +
1

m
‖fz‖2σ +











m2−q/2λ(Ez(fz) + 1/m‖fz‖2σ)q/2, 0 < q ≤ 2,

λm(Ez(fz) + 1/m‖fz‖2σ)q/2, q > 2.

Recalling that

Ez(fz) +
1

m
‖fz‖2σ ≤ M2,

we get

Ez(πMfz,λ,q) + λ
m
∑

i=1

|ai|q ≤ Ez(fz) +
1

m
‖fz‖2σ +











m2−q/2λM q, 0 < q ≤ 2,

λmM q, q > 2.

≤ Ez(f0) +
1

m
‖f0‖2σ +











m2−q/2λM q, 0 < q ≤ 2,

λmM q, q > 2.

This finishes the proof of Proposition 5.

E. Learning rate analysis

Proof of Theorem 1:We assemble the results in Propositions 1 through 5 to write

E(fz,λ,q)− E(fρ) ≤ D(m) + S(m, λ, q) + P(m, λ, q)

≤ C(σ2r + σ−d/m) +
7(3M + (2r − 1)M)2 log 2

δ
)

3m

+
1

2
{E(fm,λ,q)− E(fρ)}+ C log

4

δ
m− 2

2+pσ
(p−2)(1+µ)d

2+p A(λ,m, q, p) + B(λ,m, q)

holds with confidence at least1− δ, where

A(λ,m, q, p) :=











(M−2λ)
−2p

q(2+p) , 0 < q ≤ 1,

m
2p(q−1)
q(2+p) (M−2λ)−

2p
q(2+p) , q ≥ 1.
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and

B(λ,m, q) :=











m2−q/2λM q, 0 < q ≤ 2

λmM q, q > 2.

Thus, for0 < q < 1, σ = m− 1
2r+d , λ = M2m

−12r−4d+2rq+qd
4r+2d , if we setµ = ε

2d
, p = qε

4rq+12r+4d−dq−1.5ε
,

then

E(fz,λ,q)− E(fρ) ≤ C log
4

δ
m− 2r−ε

2r+d

holds with confidence at least1− δ, whereC is a constant depending only ond andr.

For 1 ≤ q ≤ 2, σ = m− 1
2r+d , λ = M2m

−12r−4d+2rq+qd
4r+2d , if we setµ = ε

2d
, p = εq

6rq+8r+2d−1.5εq
,

then

E(fz,λ,q)− E(fρ) ≤ C log
4

δ
m− 2r−ε

2r+d

holds with confidence at least1− δ, whereC is a constant depending only ond andr.

For q > 2, σ = m− 1
2r+d , λ = M2m

−4r−d
2r+d , if we setµ = ε

2d
, p = εq

4r+6qr+qd−1.5εq
, then

E(fz,λ,q)− E(fρ) ≤ C log
4

δ
m− 2r−ε

2r+d

holds with confidence at least1− δ, whereC is a constant depending only ond, M andr. This

finishes the proof of the main result.
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