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learning with Gaussian kernel
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Abstract

Regularization is a well recognized powerful strategy tgrave the performance of a learning
machine and? regularization schemes with< ¢ < oo are central in use. It is known that differeqt
leads to different properties of the deduced estimatoys,/$aegularization leads to smooth estimators
while ! regularization leads to sparse estimators. Then, how duegéneralization capabilities of
19 regularization learning vary witly? In this paper, we study this problem in the framework of
statistical learning theory and show that implementifigcoefficient regularization schemes in the
sample dependent hypothesis space associated with Gaussigel can attain the same almost optimal
learning rates for alll < ¢ < oo. That is, the upper and lower bounds of learning rates/for
regularization learning are asymptotically identical &0 < ¢ < oco. Our finding tentatively reveals
that, in some modeling contexts, the choiceqofmight not have a strong impact with respect to the
generalization capability. From this perspectiyecan be arbitrarily specified, or specified merely by

other no generalization criteria like smoothness, contfmrtal complexity, sparsity, etc..

Index Terms

Learning theory, Sample dependent hypothesis sgéaegularization learning, Gaussian kernel.

. INTRODUCTION

Many scientific questions boil down to learning an undedyrnle from finitely many input-
output samples. Learning means synthesizing a functionctma represent or approximate the
underlying rule based on the samples. A learning system limalty developed for tackling

such a supervised learning problem. Generally speakingamihg system should comprise a
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hypothesis space, an optimization strategy and a leardgagitam. The hypothesis space is a
family of parameterized functions that regulate the formd properties of the estimator to be
found. The optimization strategy depicts the sense in wihiehestimator is defined, and the
learning algorithm is an inference process to yield the dbje estimator. A central question of
learning is and will always be: how well does the synthesiizedttion generalize to reflect the
reality that the given “examples” purport to show us.

A recent trend in supervised learning is to utilize the keapproach, which takes a reproduc-
ing kernel Hilbert space (RKHS) [Cucker and Smale,2001peissed with a positive definite
kernel as the hypothesis space. RKHS is a Hilbert space atims in which the pointwise
evaluation is a continuous linear functional. This propentakes the sampling stable and effec-
tive, since the samples available for learning are commordgeled by point evaluations of the
unknown target function. Consequently, various learnicigesnes based on RKHS such as the
regularized least squares (RLS) [Cucker and Smale|2002], [27] and support vector machine
(SVM) [15], [20] have triggered enormous research actiiin the last decade. From the point
of view of statistics, the kernel approach is proved to pssgerfect learning capabilities [22],
[27]. From the perspective of implementation, howevernkémethods can be attributed to such
a procedure: to deduce an estimator by using the linear a@tibn of finitely many functions,
one firstly tackles the problem in an infinitely dimensiornahese and then reduces the dimension
by utilizing a certain optimization technique. Obvioudlye infinite dimensional assumption of
the hypothesis space brings many difficulties to the implaateon and computation in practice.

This phenomenon was firstly observed in![28], where Wu anduZsuggested the use of
the sample dependent hypothesis space (SDHS) directlynstroat the estimators. From the
so-called representation theorem in learning theory [Euekd Smale,2001], the learning pro-
cedure in RKHS can be converted into such a problem, whosethggpis space can be expressed
as a linear combination of the kernel functions evaluatati@sample points with finitely many
coefficients. Thus, it implies that the generalization ¢altges of learning in SDHS are not worse
than those of learning in RKHS in certain a sense. Furthezmas SDHS is am-dimensional
linear space, various optimization strategies such asae#icient-based regularization strategies
[16], [28] and greedy-type schemes [Barron et al.,20081] [dan be applied to construct the

estimator.
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In this paper, we consider the general coefficient-basedlaagation strategies in SDHS. Let

Hiz = {Z a; K, a; € R}
i=1

be a SDHS, wherdé,(-) = K(-,t) and K (-, -) is a positive definite kernel. The coefficient-based

17 regularization strategyl{ regularizer) takes the form of

fona = are i {2 35(7(e) 2 42001}, ®

EHKkz | ™ =1

where\ = A(m, ¢) > 0 is the regularization parameter af(f) (0 < ¢ < oo) is defined by

m m

QI(f) = Z la;|” when f = Z%‘K:ci € Hi s

i=1 i=1
A. Problem setting

In practice, the choice af in (D) is critical, since it embodies the properties of thé@pated
estimators such as sparsity and smoothness, and also takes ather perspectives such as
complexity and generalization capability into considierat For example, foi? regularizer, the
solution to [1) is the same as the solution to the regularieadt squares (RLS) algorithm in
RKHS [Cucker and Smale,2001]

o= o i {4 35) = 0+ A | @

CHx (M35

where Hy is the RKHS associated with the kerngl. Furthermore, the solution can be an-
alytically represented by the kernel function [Cucker arb,2007]. The obtained solution,
however, is smooth but not sparse, i.e., the nonzero cazftiof the solution are potentially
as many as the sampling points if no special treatment istakiaus,/? regularizer is a good
smooth regularizer but not a sparse one. fFer ¢ < 1, there are many algorithms such as the
iteratively reweighted least squares algorithm [2] andatige half thresholding algorithm [31]
to obtain a sparse approximation of the target function. eélex, all of these algorithms suffer
from the local minimum problem due to the non-convex natuFes ¢ = 1, many algorithms
exist, say, iterative soft thresholding algorithm [1], L8S [8], [24] and iteratively reweighted
least square algorithm![2], to yield sparse estimators @tdéinget function. However, as far as the
sparsity is concerned, thé regularizer is somewhat worse than tHg0 < ¢ < 1) regularizer,
while as far as the training speed is concerned,/theegularizer is in turn slower than that

of the /2 regularizer. Thus, we can see that, different choicesg ofay deduce estimators with
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different forms, properties, and attributions. Since thedg of generalization capabilities lies
in the center of learning theory, we would like to ask thedwling question: what about the
generalization capabilities of thHé regularization schemeBl(1) for< ¢ < oco?

Answering the above question is of great importance, sihaadovers the role of the penalty
term in the regularization learning, which then further ertiés the learning strategies. However,
it is known that the approximation capability of SDHS deperteavily on the choice of
the kernel, it is therefore almost impossible to give a gananswer to the above question
independent of kernel functions. In this paper, we aim tovjgi®@an answer to the above question

when the widely used Gaussian kernel is utilized.

B. Related work and our contribution

There exists a huge number of theoretical analysis of kemethods, many of which are
treated in [[Cucker and Smale,2001], [Cucker and Zhou,20[@ponnetto and DeVito,2007],
[5], [15], [20] and references therein. This means thatotegiresults on the learning rate of the
algorithm [2) are given. The recent work [13] suggested thatpenalty|| f||7,, may not be the
optimal choice from a statistical point of view, that is, tReS strategy may have a design flaw.
There may be an appropriate choiceqoih the following optimization strategy

2= i {43507 - 07+ A | @
such that the performance of learning process can be imgrohe this end, Steinwart et al.
[22] derived ag-independent optimal learning rate @f (3) in the minmax sef$erefore, they
concluded that the RLS strateqy (2) has no advantages ahdistages compared to other values
of ¢ in () from the viewpoint of learning theory. However, eveithesut such a result, it is
unclear how to solve {3) wheq # 2. That is,q = 2 is currently the only feasible case, which
in turn makes RLS strategy the method of choice.

Differently, (7 coefficient regularization stratedyl (1) is solvable foritmany 0 < ¢ < co. Thus,
studying the learning performance of the stratédy (1) wiffeknt ¢ is more interesting. Based
on a series of work as [6], [16], [23], [25], [28], [30], we hleghown that there is a positive
definite kernel such that the learning rate of the corresipgnid regularizer is independent of

q in the previous papef [10]. However, the problem is that tmé&l constructed in [10] can
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not be easily formulated in practice. Thus, seeking kertieds possess the similar property and
can be easily implemented is worth of investigation.

Fortunately, we show in the present paper that the well kn@aossian kernel possesses
similar property, that is, as far as the learning rate is eomed, alli? regularization schemes
(@) associated with the Gaussian kernel fox ¢ < co can realize the same almost optimal
theoretical rates. That is to say, the influencey @n the learning rates of the learning schemes
(@) with Gaussian kernel is negligible. Here, we emphasim bur conclusion is based on
the understanding of attaining the same almost optimahiegrrate by appropriately tuning
the regularization parameter Thus, in applicationsy can be arbitrarily specified, or specified

merely by other no generalization criteria (like complgxgparsity, etc.).

C. Organization

The reminder of the paper is organized as follows. In Sec@pafter reviewing some basic
conceptions of statistical learning theory, we give the m@sults of this paper, that is, the
learning rates of? (0 < ¢ < oo) regularizers associated with Gaussian kernel are provided

section 3, the proof of the main result is given.

[I. GENERALIZATION CAPABILITIES [¢ COEFFICIENT REGULARIZATION LEARNING
A. A fast review of statistical learning theory
Let M > 0, X C R? be an input space and C [-M, M| be an output space. Let =
(x;,y;)", be a random sample set with a finite sizec N, drawn independently and identically
according to an unknown distributignon Z := X x Y, which admits the decomposition
p(z,y) = px(z)p(y|z).

Suppose further that : X — Y is a function that one uses to model the correspondence éetwe
x andy, as induced by. A natural measurement of the error incurred by usfraf this purpose

is the generalization error, defined by

E(f) = [ (fl@) —y)dp.

which is minimized by the regression function [Cucker andagn2001], defined by
fol@) = [ ydp(yla)
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However, we do not know this ideal minimiz¢y due top is unknown. Instead, we can turn to
the random examples sampled according.to

Let Lf)x be the Hilbert space opyx square integrable function defined on, with norm
denoted by]| - ||,. Under the assumptioffi, € Lf)X, it is known that, for everyf € L2 , there
holds

EF) = E(fp) = IIf = Fll;. (4)

The task of the least squares regression problem is them&troat functionf, that approximates

[, in the sense of norrj) - ||, using the finitely many samples

B. Learning rate analysis

Let
Gy, 7") = Gyl — 2') := exp{—||z — 2'||3/0°}, z,2’ € X

be the Gaussian kernel, whese> 0 is called the width ofG,. The SDHS associated with
G (-,-) is then defined by

ga,z = {iaiGa(xia ) ra; € R} .
i=1

We are concerned with the following coefficient-based regularization strategy
_ ; I & 2 .- |4
foa = ang i {033 0(a) = 0 + 33 o} ®)
where f(z) = >, a;G,(x;,x). The main purpose of this paper is to derive the optimal bound

of the following generalization error

E(fana) = EUfp) = Ifara — Fll; (6)

forall 0 < g < oc.

Generally, it is impossible to obtain a nontrivial rate ofneergence result of [6) without
imposing strong restrictions gn[[7, Chapter 3] . Then a large portion of learning theory peatse
under the condition thaf, is in a known se®. A typical choice of® is a set of compact sets,
which are determined by some smoothness conditions [4h Suchoice of© is also adopted

in our analysis. LetX = I¢ := [0,1]%, ¢, be a positive constant, € (0,1], andr = u + v for
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someu € Ny := {0} UN. A function f : I? — R is said to be(r, co)-smooth if for every

a= (-, aq), 0 € No, Y)_, a; = u, the partial derivative%wf%% exist and satisfy

o' f ot f
— < — 2|2
01'10‘1 '-'al'do‘d X 09310‘1---89:dad (Z) —COHx Z||2

Denote by F (<) the set of all(r, co)-smooth functions. In our analysis, we assume the prior
information f, € F("<) is known.

Let 75t denote the clipped value afat 11, that is, )t := min{M, |t|}sgnt, where sgh
represents the signum function of Then it is obvious![7],[[22],[35] that for alt € R and
y € [—M, M| there holds

E(marfarg) = E(fp) < E(fara) = E(Sp).

The following theorem shows the learning capability of tearling strategyl (5) for arbitrary
0<q<oo.
Theorem 1:Letr >0, ¢ > 0,60 € (0,1), 0 < g < oo, f, € F"®, and f,  , be defined as in

1
®). If c = m~2+4, and

—12r—6d+2rq+qd

M?m ir¥2d , 0<qg<2.

4r4-2d

M?m ™ 2r+d q>2,

A\ =

then, for arbitrarye > 0, with probability at least — 9, there holds
4 _2r—e¢
E(mufana) = E(fp) < Clog zm™ 254, (7)

where(C' is a constant depending only @i, ¢y, ¢ and M.

C. Remarks

In this subsection, we give certain explanations and resnafkrheoreni Il. We depict it into
four directions: remarks on the learning rate, the choicthefwidth of Gaussian kernel, the role
of the regularization parameter, and the relationship betwy and the generalization capability.

1) Learning rate analysisit can be found in[[7] and [4] that if we only know, € F", then
the learning rates of all learning strategies basednosamples can not be faster thar 74
More specifically, letM (F"*) be the class of all Borel measurgson Z such thatf, € F".

We enter into a competition over all estimatods, : z — f, and define

em(f'r,co) ;= inf sup Ep’”( fP - szi>

.A7n pGM (f'r,co)
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It is easy to see that,, (F™) quantitively measures the quality ¢f. Then it can be found in
[7, Chapter 3] or[[4] that

em(F0) > Cm™ 75, m=1,2,..., ®)

where(C' is a constant depending only dv, d, ¢, andr.
Modulo the arbitrary small positive numberthe established learning rake (7) is asymptotically

optimal in a minmax sense. If we notice the identity:

By (E(f,) = Efara)) = | Pond&(f,) = Efuna) > e}
then there holds

Cym™ 751 < e, (F70) < f i En {€(Tarfang) — E(fp)} < Cym™ 7™, ©)
pe T,C0

where(C; and C, are constants depending only ency, M andd.

Due to [9), we know that the learning stratedy (5) is almost tptimal method if the
smoothness information ¢f, is known. It should be highlighted that the above optimastgiven
in the background of the worst case analysis. That is, forremete f,, the learning rate of the
strategy [(b) may be much faster thaut =+, For example, if the concretg, € 7 C F",
then the learning rate ofl(5) can achieverto ©+a e, Summarily, the conception of optimal
learning rate is based aA™ rather than a fixed regression functions.

2) Choice of the width:The width of Gaussian kernel determines both approximatian
pability and complexity of the corresponding RKHS, and thplays a crucial role in the
learning process. Admittedly, as a function @f the complexity of the Gaussian RKHS is
monotonically decreasing. Thus, due to the so-called biak \@ariance problem in learning
theory [Cucker and Zhou,2007], there exists an optimal aghaif o for the Gaussian kernel
method. Since SDHS is essentially aadimensional linear space and the Gaussian RKHS is an
infinite space for arbitrary (kernel width) [14], the complexity of the Gaussian SDHS nbay
smaller than the Gaussian RKHS at the first glance. Hencee tiedurally arises the following
guestion: does the optimal of the Gaussian SDHS learning coincide with that of the Ganss
RKHS learning? Theorefd 1 together with [5, Corollary 3.2jndastrate that the optimal widths
of the above two strategies are asymptomatically identidadt is, if the smooth information of
the regression function is known, then the optimal choides of both learning strategie§|(5)

and [2) are the same. The above phenomenon can be explaif@tbas. Let By be the unit
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ball of the Gaussian RKHS an := { f € G, : £ S0, | £(x;)|* < 1} be thel® empirical ball.
Denote byN>(By,, ) the l,-empirical covering numbel [16], whose definition can benidin
the descriptions above Lemrha 5 in the present paper. Themnitoe found in[[20, Theorem

2.1] that for any= > 0, there holds
IOgNQ(BHU, 5) < Cp’uvdg(pﬂ—l)(lw)dg—p’ (10)

where p is an arbitrary real number if0,2] and x is an arbitrary positive number. For the

Gaussian SDHSj, ,, on one hand, we can use the fact that, ¢ H, and deduce
log No(By,€) < Gy, qo /2 D41, (11)

whereC7 , ; is a constant depending only enu andd. On the other hand, it follows from[7,

Lemma 9.3] that
44 ¢

log No(By,e) < Cqmlog (12)

where the finite-dimensional property 6f , is used. Therefore, it should be highlighted that
the finite-dimensional property @, , is used if

44¢
€

Cymlog < Cl/)’u7do-(p/2_1)(1+llz)d€—p7

which always implies that is very small (may be smaller thaﬁ).
However, to deduce a good approximation capabilityGef,, it can be deduced from [12]
that o can not be very small. Thus, we udel(11) rather thah (12) teribesthe complexity
of G, .. Noting (10), wheno is not very small (corresponding t/m), the complexity ofG, ,
asymptomatically equals to that &f,. Under this circumstance, recalling that the optimal wsdth
of the learning strategie§](2) arid (5) may not be very smiadl,dapacities of, , and H, are
asymptomatically identical. Therefore, the optimal cleadt o in (B) are the same as that O (2).
3) Importance of the regularization termWe can address the regularized learning model as a
collection of empirical minimization problems. Indeed, Bbe the unit ball of a space related to
the regularization term and consider the empirical minatian problem inr3 for somer > 0.
As r increases, the approximation error fof decreases and its sample error increases. We
can achieve a small total error by choosing the correct value and performing empirical
minimization in 53 such that the approximation error and sample error are asyngically

identical. The role of regularization term is to force thgalthm to choose the correct value
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10

of r for empirical minimization([13] and then provides a methddsolving the bias-variance
problem. Therefore, the main role of the regularizationmtés to control the capacity of the
hypothesis space.

Compared with the regularized least squares strafelgy (2pnaensus is thdf coefficient
regularization schemeis|(5) may bring a certain additiamakéest such as the sparsity for suitable
choice ofg [16]. However, it should be noticed that this assertion mayalways be true.

There are usually two criteria to choose the regularizaparameter in such a setting:

(a) the approximation error should be as small as possible;

(b) the sample error should be as small as possible.

Under the criterion (a)\ should not be too large, while under the criterion (b)can not be
too small. As a consequence, there is an uncertainty ptenoipthe choice of the optimal for
generalization. Moreover, if the sparsity of the estimasoneeded, another criterion should be
also taken into consideration, that is,

(c) The sparsity of the estimator should be as sparse asbpmssi
The sparsity criterion (c) requires that should be large enough, since the sparsity of the
estimator monotonously decreases with respect.tti should be pointed out that the optimal
Ao for generalization may be smaller than the smallest value &6 guarantee the sparsity.
Therefore, to obtain the sparse estimator, the generalizatpability may degrade in certain a
sense. Summarily? coefficient regularization scheme may brings a certaintemtail attribution
of the estimator without sacrificing the generalizationatality but not always so. It may depend
on the distributiorp, the choice of; and the samples. In a word, tifecoefficient regularization
schemel[(b) provides a possibility to bring other advantag#sout degrading the generalization
capability. Therefore, it may outperform the classicalngtmmethods in certain a sense.

4) ¢ and learning rate: Generally speaking, the generalization capability‘ofegularization
schemel[(5) may depend on the width of Gaussian kernel, thdargzption parametei, the
behavior of priors, the size of samples and, obviously, the choice gf While from Theorem 1
and [9), it has been demonstrated that the learning scheefiagedi by [b) can indeed achieve the
asymptotically optimal rates for all choices @fin other words, the choice gfhas no influence
on the learning rate, which in turn means thashould be chosen according to other non-

generalization considerations such as the smoothnessjtgpand computational complexity.
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Fig. 1. The above three figures show the routes of the chang® 6f and('/? regularizers, respectively.

This assertion is not surprising if we cdé$tregularization schemeg](5) into the process of
empirical minimization. From the above analysis, it is kmothat the width of Gaussian kernel
depicts the complexity of thé& empirical unit ball and the regularization parameter dessr
the choice of the radius of thé ball. It should be also pointed out that the choicejamplies
the route of the change in order to find the hypothesis spatte ttve appropriate capacity. A
regularization scheme can be regarded as the followingegsoaccording to the bias and variance
problem. One first chooses a large hypothesis space to deartre small approximation error,
and then shrinks the capacity of the hypothesis space tetisample error and approximation
error being asymptomatically identical. It can be found ig.F that/, regularization schemes
with differentq may possess different paths of shrinking, and then dertvmators with different
attributions. From Fig.1, it also shows that, by approphatuning the regularization (the radius
of the [? empirical ball), we can always obtaii regularizer estimators for all < ¢ <
with the similar learning rates. In such a sense, it can beladed that the learning rate &f

regularization learning is independent of the choicey.of

D. Comparisons

In this subsection, we give many comparisons between Theldieand the related work to
show the novelty of our result. We divide the comparisons the following three categories. At
first, we illustrate the difference between learning in RK&t#l SDHS associated with Gaussian
kernel. Then we compare our result with the existing resatsoefficient-based regularization
in SDHS. Finally, we refer certain papers concerning theicghof regularization exponernt

and show the novelty of our result.
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1) Learning in RKHS and SDHS with Gaussian kernEernel methods with Gaussian
kernels are one of the classes of the standard and stabe-@irt learning strategies. Therefore,
the corresponding properties such as the covering nunfREiS norms, formats of the elements
in the RKHS, associated with Gaussian kernels were studi¢tii, [19], [21], [34]. Based on
these analyses, the learning capabilities of Gaussiareklrarning were thoroughly revealed in
[5], [9], [20], [29], [32] and references therein. For cldiestion, [20] showed that the learning
rates for support vector machines with hinge loss and Gawdsérnel can attain the order
of m~!. For regression, it was shown inl [5] that the regularizedtleguares algorithm with
Gaussian kernel can achieve the almost optimal learnirggifdhe smoothness information of
the regression function is given.

However, the learning capability of the coefficient-basedutarization schemél(5) remains
open. It should be stressed that the roles of regularizagions in [5) and[(2) are distinct even
though the solutions to these two schemes are identicaj fer2. More specifically, without
the regularization term, there are infinite many solutiomghe least squares problem in the
Gaussian RKHS. In order to obtain an expected and uniquéi@o/uve should impose a certain
structure upon the solution, which can be achieved via duicong a specified regularization
term. Therefore, the regularized least squares algorif)ncdn be regarded as a structural risk
minimization strategy since it chooses a solution with timepest structure among the infinite
many solutions. However, due to the positive definitenesthefGaussian kernel, there is a
unique solution to[(5) withh = 0 and the role of regularization can be regarded to improve
the generalization capability only. Summarily, the inotion of regularization in[{2) can be
regarded as a passive choice, while thalin (5) is an actieeatipn.

The above difference requires different technique to aeathe performance of stratedy (5).
Indeed, the most widely used method was proposed in [28le®Ban [26], [28] pointed out
that the generalization error can be divided into three $emmpproximation error, sample error
and hypothesis space. Basically, the generalization eaonrbe bounded via the following three
steps:

(S1) Find an alternative estimator outside the SDHS to aqyma&te the regression function;
(S2) Find an approximation of the alternative function inHE®and deduce the hypothesis
error;

(S3) Bound the sample error which describes the distanagelet the approximant in SDHS
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and thel, regularizer.
In this paper, we also employ this technique to analyze thpeance of the learning strategy
(B). Our result shows that, similar to the regularized lesagtares algorithmi [5]¢ coefficient-
based regularization schenié (5) can also achieve the abptistal learning rate if the smooth-
ness information of the regression function is given.

2) 17 regularizer with fixed;: There have been several papers that focus on the geneaalizat
capability analysis of thd? regularization schemé](1)._[28] was the first paper, to thst be
of our knowledge, to show a mathematical foundation of le@yralgorithms in SDHS. They
claimed that the data dependent nature of the algorithmsléadan extra hypothesis error,
which is essentially different form regularization schenvdth sample independent hypothesis
spaces (SIHSs). Based on this, the authors proposed a woeffi@ased regularization strategy
and conducted a theoretical analysis of the strategy bydidiyithe generalization error into
approximation error, sample error and hypothesis errollowng their work, [30] derived a
learning rate of! regularizer via bounding the regularization error, sangster and hypothesis
error, respectively. Their result was improved|in/[16] bypting a concentration technique with
I> empirical covering numbers to tackle the sample error. @natiher hand, fot? (1 < ¢ < 2)
regularizers,[25] deduced an upper bound for the genatadiz error by using a different method
to cope with the hypothesis error. Later, the learning rdtf25] was improved further in[[6]
by giving a sharper estimation of the sample error.

In all those researches, both spectrum assumption of theessign functionf, and the
concentration property gfy should be satisfied. Noting this, fét regularizer, [23] conducted
a generalization capability analysis f&r regularizer by using the spectrum assumption to the
regression function only. Fdt regularizer, by using a sophisticated functional analyséshod,
[33] and [18] built the regularized least squares algorithmthe reproducing kernel Banach
space (RKBS), and proved that the regularized least squégesithm in RKBS is equivalent
to [ regularizer if the kernel satisfies some restricted comaiiti Following this method| [17]
deduced a similar learning rate for tHeregularizer and eliminated the concentration assumption
on the marginal distribution .

To intrinsically characterize the generalization capgbibf a learning strategy, the essential
generalization bound rather than the upper bound is dedinatl is, we must deduce both the

lower and upper bounds for the learning strategy and proaettie upper and lower bounds
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can be asymptotically identical. Under this circumstamoe can essentially deduce the learning
capability of the learning scheme. All of the above resultsif regularizers with fixed; were
only concerned with the upper bound. Thus, it is generalfficdit to reveal their essential
learning capabilities. Nevertheless, as shown by Thedreroul established learning rate is
essential. It can be found inl(9) that ff, € 7™, then the deduced learning rate cannot be
improved.

3) The choice of;: [Blanchard et al.,2008] is the first paper, to the best of mwowledge,
that focuses on the choice of the optimalor the kernel method. Indeed, as far as the sample
error is concerned| [Blanchard et al.,2008] pointed out there is an optimal exponent# 2
for support vector machine with hinge loss. Then, [13] fotimat this assertion also held for the
regularized least square strateffy (3). That is, as far asaimple error is concerned, regularized
least squares may have a design flaw. However, inh [22], Stetret al. derived g-independent
optimal learning rate of (3) in a minmax sense. Thereforey ttoncluded that the RLS algorithm
(2) had no advantages or disadvantages compared with ahersvofq in (3) from the statistical
point of view.

Sincel? coefficient regularization stratedyl (1) is solvable forittany 0 < ¢ < oo, and different
g may derive different attributions of the estimator, studythe dependence between learning
performance of learning stratedyl (1) apnds more interesting. This topic was first studied in
[10], where we have shown that there is a positive definiteéddesuch that the learning rate of
the correspondingf regularizer is independent gf However, the kernel constructed in [10] can
not be easily formulated in practice. Thus, we turn to studydependency of the generalization
capabilities and of [? regularization learning with the widely used Gaussian &kerRortunately,
we find that the similar conclusion also holds for the Gaus&iarnel, which is witnessed in

Theorent1 in this paper.

[Il. PROOF OFTHEOREM[I.
A. Error decomposition
For an arbitraryu = (us, ..., ug) € 14, define F*)(u) = f,(u). To construct a functiort’("

defined on[—1, 1]¢, we can define

1 _ (0
Fp( )(ul, e UG, = U Uy - Ug) = F[E )(ul,...,uj_l,uj,ujH, Ce,Ug)
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for arbitraryj = 1,2, ...,d. Finally, for everyj =1,...,d, we define
Fp(ula Uj—1, Uj + 27uj+17 s 7ud) = F;Sl)(ulv ceey Uj—1, Uj, Ujq1, - - 7ud)‘

Therefore, we have constructed a functiéndefined onR¢. From the definition, it follows that
F, is an even, continuous and periodic function with respeetbatrary variables;,: = 1,...,d.
In order to give an error decomposition strategy §¢rry, f,.,.,) — £(f,), we should construct

a function f, € Hy as follows. Define

folz) = K % F, := /R K(z—u)Fy(u)du, z €T, (13)

where

K@ =3 () 0% (=) G,

= j¢ \o?m vz
Denote by, and| - ||, the RKHS associated witt¥, and its corresponding RKHS norm,
respectively. To prove Theorelm 1, the following error deposition strategy is required.

Proposition 1: Let f, , , and f, be defined as ir_{5) and ([L3), respectively. Then we have
1
E(mafana) —E(fp) < E(fo) =E(f,) + —Ifollz

Ui 1
b (&t 33 o) = (800 + IAI2)

+ gz(f()) - g(f()) + g(ﬂ-Mfz,)\,q) - gz(ﬂ-Mfz,)\,q)a

where&,(f) = = S (yi — f(2))*
Upon making the short hand notations

D) = E(fo) — () + - fll
S(m, A, q) = E(fo) = E(fo) + E(Tarfara) — Ea(Trs fzng),

and

Pl )= (Exrarfund) + 33 lal) = (&) + 1l

for the approximation error, sample error and hypothesiarerespectively, then we have

g(WMfZ,)\7q) - g(fp) S D(m) + S(mv )‘7 Q) + P(ma )\7 Q) (14)
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B. Approximation error estimation

Let A C R% Denote byC(A) the space of continuous functions defined o®ndowed with

norm || - ||4. Denote by
we(f,t, A) = sup [|Ag 4(f;-)lla

h]2<t

the r-th modulus of smoothness|[3], where th¢h differenceA, 4(f,-) is defined by

T .
) T (=1~ f(x + jh) if x € Ay
Apalf,x) = ’ ( J )
0 if ¢ An
for h = (hy,...,hq) € RYand 4, == {x € A: x+sh € A, forall s €[0,r]}. It is well
known [3] that

anlft,A) < (14 5) (s, 4), (15)

To bound the approximation error, the following three lersrage required.
Lemma 1:Letr > 0. If f, € C(I%), thenF, € C(R) satisfies
) F,(z) = f,(z), v €I
DT A
i) w,(F,,t,RY) <w,.(f,t,I%.
Proof: Based on the definition of),, it suffices to prove the third assertion. To this end, for
an arbitraryv = (vy, ..., v4) € R? noting that the period of, with respect to each variable is

2, there exists &;;, such that + jh — 2k;1, € [-1,1]% That is,

Apa(Fp) = 3 ( ' ) () E (b = Y ( ' ) (=1)" 7 F,(v — 2k; + jh)

=0\ J

Since F, is even, we can deduce

T .
| (D) E(Jv — 2kjn + jh)
J

Ainl,Rd(FP»'U) = Z (
=0

r T . ]
il ( (=" fp(lv — 2k;n + jhl)
Hence, by the definition of the modulus of smoothness, we have

w(F,,t, RY) < w,(f,,t,1%),
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which finishes the proof of Lemmiad 1. [
Lemma 2:Let r > 0 and f, be defined as if(13). If, € C(1¢), then
||fp — follie < er(fpvg> Id)v
whereC' is a constant depending only @handr.
Proof: It follows from the definition off, that
folz) = / K(z — u)F,(u)du
Rd
_ " et <i>d/2 . d
> ( j ) el = /R G2 (h)F,(z + jh)j%dh
9 d/2 r r . .
_ /Rd (E) Gopalh) | 32 j (—=1)'"9F,(z + jh) | dh
As
2 d/2
/Rd (ﬁ) G,/ yz(h)dh =1,
it follows from Lemmall that
|fo(z) — fp(x)|
D) d/2 r r - .
= V() o) || | 04| dn - (o)
‘]:
D) d/2 r r
- [ (G2) Gopal® (~1)" (o + jb) — Fy(x) | dh
g°m
=1\ J
2 \? ~ T 2r4j—1 ,
— [ () G [ | |0 E (e ) | d
=0\ J
. 2 d/2
— /Rd(_1)r+ <E) Ga/ﬁ(h)A;’Rd(Fp,x)dh|
2 d/2
< 0 () Gt Il
Then, the same method as that [of [5] yields that
||fp — follie < er(fpvg> Id)-
u
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Furthermore, it can be easily deduced frarn [5, Theorem h8]lammaé_lL that the following
Lemmal3 holds.
Lemma 3:Let f, be defined as i (13). Then we hayige H, with

Ifolls < (ov/m)~ 22" = D)o~ 2| fyllxe, and | folle < (2" = DIl fpllra.

Lemmal3B together with Lemmd 2 anfj € 7" yields the following approximation error
estimation.
Proposition 2: Let r > 0. If f, € 7", then

megc@%+i;)

maod

where(C' is a constant depending only @i ¢, andr.

C. Sample error estimation

In this subsection, we will bound the sample er®im, A, ¢). Upon using the short hand

notations
Si(m) = {&(fo) = &(f,)} —{€(fo) — E(fo)}
and
Sa(m, A, q) = {E (M farg) = E(fp)} = {€u(marfura) = Ea(fo)},
we have

S(m, A, q) = Si(m) + Sa(m, A, q). (16)

To boundS; (m), we need the following well known Bernstein inequality [16]
Lemma 4:Let ¢ be a random variable on a probability spa¢ewith variancey? satisfying

|€ — E¢| < M, for some constand/,. Then for any0 < ¢ < 1, with confidencel — §, we have

1 2M; log L 202 1og L
— 3 (z) —Be< 80 [TT 08
m i 3am m

By the help of Lemmal4, we provide an upper bound estimats; of2).

Proposition 3: For any0 < ¢ < 1, with confidencel — g there holds

T(3M + (2" — 1)M)%log %) 1
3Im 2

81 (m) S

September 19, 2014 DRAFT



19

Proof: Let the random variablé on Z be defined by

&(z) = (y = fol@)* = (y = fo(2))* z=(a,y) € Z.
Since|f,(z)| < M and || fo||z« < C, :== (2" — 1)M almost everywhere, we have
E@)| = (fol2) = fol2))(2y — folx) = folx))
< (M+C)BM+C,) < M :=(3M + C,)?

and almost surely
€ — BE| < 2M,.

Moreover, we have

B(&) = /Z(fo(SC) + fo(@) = 2y)*(fo(2) — fo(@))*dp < Me|lf, — foll;,
which implies that the variance? of ¢ can be bounded as* < FE(¢?) < MD(m). Now
applying Lemma 4, with confidence— g we have

< 4Melog 2 N \/2M§D(m) log 2

3m m

Sim) = 3 () - e

7(3M + C,)?log2 1
(BM + C)"log ; + =D(m).
3m 2

u

To boundS,(m, A, ¢), ani? empirical covering numbef [16] should be introduced. (&1, d)

be a pseudo-metric space afid- M a subset. For every > 0, the covering numbel (T, ¢, ci)
of T with respect ta= andd is defined as the minimal number of balls of radiushose union

coversT, that is,
l
N(T,e,d) := min {l eN:Tc B(tj,s)}

j=1
for some{t;},_, C M, whereB(t;,e) = {t € M : d(t,t;) < e}. The [>-empirical covering
number of a function set is defined by means of the normalizedetric d» on the Euclidean
spaceR? given in with dy(a, b) = (% ™ a; — bi\z)g for a = (a;)™,, b= (b)), € R™

Definition 1: Let F be a set of functions oX, x = (z;),, and

Flx ={(fla), : f € FY C R™

September 19, 2014 DRAFT



20

SetNs«(F,e) = N(Flx, ¢, ds). The*>-empirical covering number oF is defined by

No(F,e) := sup sup Nox(F,e), > 0.

meN xesm
The following two lemmas can be easily deduced from [20, Téweo2.1] and[[23], respec-
tively.
Lemma 5:Let0 < ¢ < 1, X ¢ R? be a compact subset with nonempty interior. Then for all
0 <p<2andally > 0, there exists a constant, , , > 0 independent ot such that for all
e > 0, we have
log No(Bp,,€) < Cp g0 P/2-DHmd=p,

Lemma 6:Let F be a class of measurable functions BnAssume that there are constants
B,c >0 anda € [0, 1] such that||f|l.c < B andEf? < c¢(Ef)> for every f € F. If for some
a>0andp € (0,2),

log No(F,e) <ae™, Ve >0, (17)

then there exists a constatjt depending only o such that for any > 0, with probability at
leastl — ¢!, there holds

i\ == 18Bt
N BL) + oy + 2 (C—) + 2220 e F (18)
m m

N —

Bf -3 f(a) <

2 2
2—p a 4—2a+pa 2—p a 24p
7 = max | ci2otpre | — , B¥r [ — )
m m

We are now in a position to deduce an upper bound estimat8.for, A, ¢).
Proposition 4:Let 0 < 0 < 1 and f,,, be defined as in{5). Then for arbitraty< p < 2

where

and arbitraryu > 0, there exists a constant depending only onl, 1, p and M such that

2 (p=2)(1+p)d

1 2 __2
82(m7 )‘7 Q) S §{g(fm,>\,q) - g(fp)} + ClOg Sm g Z+p A()‘7 m, Q7p)
with confidence at least — g where

(M2, 0<q<],
A()\7 m, Q7p) = 2p(g—1) __2p
m, a(2+p) (M_z)\) a(2+p) | q > 1.

Proof: We apply Lemmal6 to the set of functiotfs;,, where

Fr, = {ly—muf(2))* = (y = fo(2))* : | € B, | (19)
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and
Bu, = {1 =3 aGatena) s < ).
=1

Each functiong € Fg, has the form

9(z) = (y—mnf(2))* = (y — fo(x))>, f € Bg,,

and is automatically a function ofd. Hence

Eg=£&(f) — 5(fp) = ||maf — fp”;z)

and
LS o) = Ealmanf) — E(F).

i=1

wherez; := (z;,y;). Observe that

9(2) = (marf () = fp(2))(mar f (2) — y) + (fp(x) —y))-

Therefore,
lg(z)| < 8M?

and
By® = [ (2~ mauf (@) = £,(2)(masf (@) = f,(@))*dp < 16)1°By.

For g1, 9. € Fr, and arbitrarym € N, we have
1 m 1/2 AN 1/2
(— S0 (z1) 92@.))2) < (— S () — f2(:cz-))2>
m iz m
It follows that

5
Noo(Fryre) < Nox (BRq7 m) <

which together with Lemmal5 implies
log Ny, (Fr,.€) < CpM,daprQ(H“)d(4MRq)p5_p.

By Lemmal6 withB = ¢ = 16M2, o = 1 anda = C,, 40" “M4(4MR,)?, we know that for
anyé € (0,1), with confidencel — %, there exists a constant depending only onl such that
for all g € Fp,

log(4/6)

1 1
Eqg— — N < =Eg+Cn+C(M+1)>—="~,
g mgg(Z)_2 g+Cn+C(M+1) p-
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Here
2
n= {16M2}%Cﬁdm_%a%2(l+“)d%ﬁ’;%.
Hence, we obtain
1 & 1 9 2=p 2—42rp —2 P2(14p)d 2 %
Eg——> 9(z) < 5Bg+{16(M + 1)} C im0 e Rq ™" log

i=1
Now we turn to estimatéz,. It follows form the definition off, , , that

5.

A ail? < E,(0)+ A0 < M
i=1

Thus,
m i 2 /\\1/a
Saed  EmlemEOrnocg
a;| > 1 1
= m'"0 (S0 el <miVe (/)Y g > 1
On the other hand,
[ fonalle = |20 @il (@i, )| <D lail.
i=1 o =1
That is,
z,\qllo =
1 mi=Va (M2 )Y g > 1.
Set
P B P R BT R F
B N0 Ve KL S §
we finishes the proof of Propositidn 4. [ |

D. Hypothesis error estimation

In this subsection, we give an error estimate ®{im, A, q).
Proposition 5: If f,,, and f, are defined in[(1) and_(13) respectively, then we have

m> 12 MY, 0 < qg<2
P(m, A, q) <
AmM9, q > 2.
Proof: If the vectorb := (by,...,b,)T satisfies(I,, + G,[x])b = y, then there holds
b = y — G,[x|b. Here,y := (y1,...,ym)’ and G,[x] be them x m matrix with its el-
ements being G, (z;, z;))7%-,. Then it follows from the well known representation theorem

[Cucker and Zhou,2007] that

m

fz = Z biGa(xia )

i=1
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is the solution to
g in {€,()+ I1/I2}.

Hence, if we writef, , , = > 1", ;G (z;, x), then

Eo(TM fana) +)\Z|az|q<g(fz)\q +>\Z|az|q<5 (f2) +/\Z|b K

i=1 i=1 =1

= fz +)‘Z|yz fz x2)|

IN

2—q/2 a/2
() + m )\(Ez(fz))2 , 0<qg<2,
m(E(f2))"?, q>2

1 m*PNE(fa) +1/ml| foll5)7?, 0 < g <2,
< gz(fz) + EHszi + {

m(E,(f2) + 1/ml| fall5) ", q>2.
Recalling that

1
Eu(fa) + —Ifall; < M,

m

we get

m2=92AMY, 0 < q <2,

m 1
SZ(W Ja, ) + A ‘ai|q < SZ(fZ> + _||fZHC2r +
uberd) AL m AmMe, q>2.

i=1

m?2\M9, 0<q<2,
AmM9, q> 2.

< &m>g;hi+{

This finishes the proof of Propositidn 5. [ |

E. Learning rate analysis

Proof of Theoreni]1:We assemble the results in Propositions 1 through 5 to write

E(farg) — E(fp) <D(m) 4+ S(m, A, q) + P(m, A, q)
7T(3M + (27 — 1)M)?log 2)

< C 2r —d
< Cle™+o07%m)+ v

2 (p—2)(A+p)d

1 4 _ 2
+ §{g(fm,)\,q) - g(fp)} + Clog gm rro Ztp A<)‘7 m, q7p) + B<)‘7 m, q)

holds with confidence at least— o, where

(M—ZA)qu—?fm, 0<g<l,
A()\7m7Q7p) = 2p(q— 2
m q(2+p) ( _2)\) a(2+p) | q>1.
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and
m2-92PA MY, 0< qg<2

AmM?, q> 2.

B(\,m,q) :=

—12r—4d+2rq+qd

1 .
Thus,for0 < ¢ < 1,0 =m ¥%, A= M*m~ w2 ifwesety =5, p= y e el

then
4 _ 2r—e¢
g(fz,A,q) - g(fp) < Clog gm 2r+d

holds with confidence at lea$t— §, whereC' is a constant depending only @handr.

Forl<q<2 0=m 7, A= Mm a0 if Y E—
orl1 <g<2,0=m 2t, A= m — ,Twe sety = o5, p= Grg T 8r2d—T5eq’
then

4 2r—e
E(farg) —E(fp) < Clog gm‘m

holds with confidence at lea$t— 9, whereC' is a constant depending only @handr.

1 —4r—d .
Forq > 2, g :m_m, )\ = M2m 2r+d 5 |f we Set,u = %, P = m, thel’l

4 2r—e
E(farg) —E(fp) < Clog gm‘m

holds with confidence at lea$t— §, whereC' is a constant depending only dn M andr. This

finishes the proof of the main result. [ ]
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